Для отправки ваших публикаций, пожалуйста, зарегистрируйтесь.

Если Вы уже зарегистрированы, то авторизуйтесь на сайте.



  1. Вход или регистрация
  1. Подписка

Ученые МФТИ решили проблему перегрева активных компонентов оптоэлектронных микропроцессоров
18 января 2016             

altРоссийские исследователи нашли решение проблемы перегрева активных компонентов оптоэлектронных микропроцессоров.
 
"Такие процессоры буду работать в десятки раз быстрее современных",- говорится в пресс-релизе МФТИ. Производительность многоядерных процессоров сегодня определяется не столько скоростью работы каждого ядра, сколько скорость обмена данными между ними. Между тем, электрические медные соединения в микропроцессорах ограничены по пропускной способности, что уже не позволяет наращивать производительность: так, двукратное увеличение количества ядер не даёт двукратного роста вычислительной мощности. Поэтому ведущие компании полупроводниковой индустрии, такие как IBM, Oracle, Intel и HP сейчас постепенно переходят от электроники к фотонике, в которой информация передаётся потоками фотонов, а не электронов. Кроме того, возможны гибридные системы.
 
Так, в оптоэлектронном микропроцессоре вычисления внутри каждого ядра будут вестись за счёт электронов, а информацию между ядрами будут практически мгновенно передавать фотонные компоненты. Однако из-за дифракции фотонные компоненты нельзя так же легко уменьшать, как электронные. Эту проблему ученые решают переходом от объемных электромагнитных волн к плазмон-поляритонам, электромагнитным волнам, способным распространяться вдоль поверхности металлов. Но, так же как протекание тока через резистор вызывает выделение тепла, так и фотонные компоненты разогреваются при прохождении поверхностной электромагнитной волны. Плотность тепловой мощности потерь с единицы поверхности плазмонного волновода составляет 10 кВт/см2, что в два раза превышает плотность излучения у поверхности Солнца.
 
Сотрудники лаборатории нанооптики и плазмоники МФТИ, нашли способ решения этой проблемы. Они показали, что использование различных термоинтерфейсов - слоев теплопроводящих материалов, находящихся между чипом и системой охлаждения и обеспечивающих беспрепятственный отвода тепла - позволит эффективно охлаждать высокопроизводительные оптоэлектронные чипы.
 
По результатам компьютерного моделирования Федянин и Вишневый сделали вывод: если оптоэлектронный чип с активными плазмонными волноводами разместить в воздухе, то его температура повысится на несколько сотен градусов Цельсия, что приведет к неработоспособности устройства. Многослойные термоинтерфейсы нано- и микрометровой толщины в сочетании с простыми системами охлаждения способны уменьшить температуру чипа с нескольких сотен до приблизительно 10 градусов Цельсия, выше температуры окружающей среды.
 
Исследование поддержано грантом Российского научного фонда и программой повышения конкурентоспособности МФТИ "5-100", а его результаты опубликованы в журнале ACS Photonics.

и-Маш. Ресурс Машиностроения.

Обсудить новость на Форуме Машиностроителей     








Комментариев пока нет
Написать комментарий
Комментирование доступно при авторизации через любую из социальных сетей:



Написать комментарий как пользователь ВКОНТАКТЕ:


Написать комментарий как пользователь FACEBOOK:

Самое обсуждаемое за последнее время

Другие публикации по теме





Автоматизация промышленных предприятий Автоматизация промышленных предприятий
Диспетчеризация производства, идентификация и прослеживаемость, управление КПЭ (KPI)...
(495) 662-43-70
Rodcraft (Родкрафт), Deprag, Stahlwille (Штальвиль), инструмент Atlas Copco (Атлас Копко), Iscar (Искар), Sandvik Coromant (Сандвик Коромант), Mitsubishi (Митсубиси). Маркировка труб, горячего металла в металлургии. Промышленное оборудование и инструмент
Rodcraft (Родкрафт), Deprag, Stahlwille (Штальвиль), инструмент Atlas Copco (Атлас Копко), Chicago Pneumatic (Чикаго Пневматик), Fuji (Фуджи), Desoutter, Iscar (Искар), Sandvik Coromant (Сандвик Коромант), Mitsubishi (Митсубиси), Korloy (Корлой), Seco tools, SGS tools, Onsrud, Fette, Guhring и пр. Оборудование для маркировки. Маркировка труб, горячего металла в металлургии. Фаскосниматели (фаскорезы, кромкорезы), ручные фрезеры по металлу. Пневмодвигатели (пневматические двигатели, пневмомоторы).
(495) 668-13-58
ИРОК-2М. Купить. Инструкция.
Инструмент ИРОК-2М от производителя. Купить. Скачать инструкцию и другие документы. Прочий электромонтажный инструмент и электрокомпоненты.
(495) 668-13-58 доб. 4
Текстовый блок сочетает в себе достоинства контекстной рекламы и баннерной.
Текстовые блоки на Ресурсе размещаются внизу всех страниц и позволяют охватить всю аудиторию машиностроительного ресурса.
Подробнее о размещении
Тел.: (4872) 71-00-63